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We use recently developed primitive path analysis �PPA� methods to study the effect of equilibration on
entanglement density in model polymeric systems. Values of Ne for two commonly used equilibration methods
differ by a factor of 2–4 even though the methods produce similar large-scale chain statistics. We find that local
chain stretching in poorly equilibrated samples increases entanglement density. The evolution of Ne with time
shows that many entanglements are lost through fast processes such as chain retraction as the local stretching
relaxes. Quenching a melt state into a glass has little effect on Ne. Equilibration-dependent differences in
short-scale structure affect the craze extension ratio much less than expected from the differences in PPA
values of Ne.
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I. INTRODUCTION

Much of the physics of bulk polymeric material is inde-
pendent of chemical detail and arises instead from the con-
nectivity of the constituent chain molecules, provided the
material is sufficiently dense and the chains sufficiently long.
Since chains cannot pass through each other, they are con-
fined to “tubes” by topological constraints that are often as-
sociated with discrete “entanglements.” The tube model of
Edwards and de Gennes has been a focus of extensive study
over the past few decades �1,2� and qualitatively describes
many aspects of entangled polymer dynamics. Perhaps its
most famous prediction is the relation ��N3 for N�Ne,
where � is the melt viscosity, N is the degree of polymeriza-
tion, and Ne is the “entanglement length.”

A key construct of the tube model is the “primitive path,”
the shortest contour into which a chain molecule fixed at its
ends may contract without crossing any other chains �1�.
Everaers and collaborators have recently used this construct
to perform “primitive path analysis” �PPA� of model en-
tangled polymeric systems �3,4�. Their results for Ne agree
with the predictions of a chain packing model �5� that ex-
plains trends in experimental results for melts and semidilute
solutions of linear homopolymers �5–9�. The PPA technique
is a promising tool for obtaining information about the be-
havior of individual entanglements which has not been ac-
cessible through other theoretical or experimental means.

In this paper, we address the relation of melt equilibration
to the entanglement length measured by PPA analysis. Ex-
perimental studies of linear homopolymer melts have shown
that Ne is controlled by the Gaussian statistics of chains at
large scales �5–7�. One might reasonably assume that values
of Ne from PPA analysis of model melts would also be con-
trolled by large-scale chain structure. Our results, however,
show that this assumption can fail badly. Well-equilibrated
states produced using a double-bridging algorithm �10� are
compared to states produced using the common fast-pushoff
method. For typical equilibration times, use of the fast push-

off produces chain stretching at short scales while preserving
large-scale structure �10�. This stretching can produce values
of Ne that are two to four times smaller than those for well-
equilibrated states, showing that failure to accurately equili-
brate short-scale chain structure can cause large systematic
errors in PPA analyses.

Our values of Ne for the well-equilibrated states agree
with values from previous PPA analyses �3,4,11� and from
other methods �12�. We verify that the reduction of Ne for
poorly equilibrated states reflects a real excess of topological
constraints, and show that early stages of the evolution of Ne

towards equilibrium can occur through fast topology-
changing processes familiar from tube theories �2�, such as
cooperative chain retraction and constraint release. The
changes in Ne with improving equilibration are correlated to
changes in chain structure.

We also perform PPA analyses of glassy states. In inter-
preting the mechanical properties of polymer glasses, it is
often assumed that the value of Ne in the glass is inherited
from the melt �13,14�. While PPA values for Ne drop slightly
upon cooling from a melt to a glass well below Tg, the
changes are comparable to systematic and statistical uncer-
tainties. Glass values for Ne cannot be compared to rheologi-
cal measurements, but can be obtained from the extension
ratio during craze formation �14,15�. We find that this mea-
sure of Ne is less sensitive to equilibration than PPA values,
perhaps because deformation into the craze structure re-
moves excess entanglements produced by local stretching.

II. POLYMER MODEL: METHODS OF MELT
EQUILIBRATION

We employ a coarse-grained bead-spring polymer model
�16,17� that incorporates key physical features of linear ho-
mopolymers such as covalent backbone bonds, excluded-
volume interactions, chain stiffness, and the topological re-
striction that chains may not cross. All monomers have mass
m and interact via the truncated and shifted Lennard-Jones
potential:*Electronic address: robhoy@pha.jhu.edu
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where rc is the potential cutoff radius and ULJ�r�=0 for
r�rc. Unless noted, rc=21/6a. We express all quantities in
terms of length a, energy �, and time �LJ=�ma2 /�.

Covalent bonds between adjacent monomers on a chain
are modeled using the finitely extensible nonlinear elastic
�FENE� potential,

UFENE�r� = −
kR0

2

2
ln�1 − �r/R0�2� , �2�

with the canonical parameter choices R0=1.5a and k
=30� /a2 �17�. The chains contain N monomers and have an
equilibrium bond length l0=0.96a. Chain stiffness is mod-
eled using the potential

Ubend�r� = kbend�1 −
b� i−1 · b� i

�b� i−1��b� i�
� = kbend�1 − cos�	i�� , �3�

where r�i denotes the position of the ith monomer on a chain
and 	i is the angle betweeen consecutive bond vectors

b� i−1=r�i−r�i−1 and b� i=r�i+1−r�i.
Newton’s equations of motion are integrated with

the velocity-Verlet method �18� and time step

t=0.005�LJ−0.012�LJ. The system is coupled to a heat bath
at temperature T using a Langevin thermostat �19�. Unless
noted, the simulation cell is a cube whose size is chosen so
that the monomer number density is �=0.85a−3. Periodic
boundary conditions are applied in all three directions. At
this density and T=1.0� /kB the system is a melt well above
the glass transition �17�. For this model, published entangle-
ment lengths vary from about 70 for fully flexible chains
�kbend=0� to 20 for semiflexible chains with kbend=2.0�
�3,4,11,12,15,20�. For the chain lengths used in this study
�N=350 and N=500�, larger values of kbend produce nematic
order �21�.

We contrast two common methods for creating initial
states for the PPA analysis. Both begin by generating initial
configurations of Nch chains without considering excluded
volume �22�. Each initial chain configuration is a random
walk of N−1 steps with the bond angles chosen to give the
desired chain statistics �10�,


R2�n�� = nl0
2�1 + 
cos�	��

1 − 
cos�	��
−

2

n


cos�	���1 − 
cos�	��n�
�1 − 
cos�	���2 � ,

�4�

where 
R2�n�� is the average squared distance between
monomers separated by chemical distance n. Large scale
measures of chain structure such as the chain stiffness con-
stant C� and Kuhn length lK are related to the chain statistics
by

C� =
lK

l0
=

1 + 
cos�	��
1 − 
cos�	��

. �5�

Lennard-Jones interactions for nonbonded monomers can-
not be introduced immediately after creating the initial chain

configurations because chains spatially overlap �22�. Instead,
a soft repulsive potential is used to reduce the chain overlap
through gradual introduction of excluded volume interac-
tions. The specific soft potential used is

Usoft�r� = �A�1 + cos� 
r

21/6a
�
, r � 21/6a

0, r � 21/6a

�6�

for nonbonded beads. The value of A is linearly increased
from 4� to 100� over a time 20�LJ, as in Ref. �10�. Unfortu-
nately, this “fast pushoff” procedure creates significant dis-
tortions in the chain statistics on length scales comparable to
the tube diameter �10,23�. Chains are stretched well beyond
the form of Eq. �4� at intermediate chemical distances �10�.

After the fast pushoff is completed, the two methods of
equilibration differ. In the pure molecular dynamics �PMD�
method, normal Lennard-Jones interactions are activated,
and integration is continued for up to 4.5�105�LJ. This
maximum equilibration time is still much shorter than the
longest relaxation time of the systems we consider, which is
the disentanglement time �d. Only after an equilibration run
of more than �d do the chain configurations come to full
equilibrium �10�, but equilibration runs much shorter than �d
are commonly used in PMD simulations �10,17�. We there-
fore refer to our PMD-prepared states as “poorly equili-
brated.”

The other equilibration method used is the double-
bridging-MD hybrid �DBH� algorithm described in Ref. �10�.
In addition to standard MD equilibration, Monte Carlo
moves which alter the connectivity of chain subsections are
periodically performed, allowing the chain configurations to
relax far more rapidly �24�. Equilibrated chain statistics from
extremely long MD runs were used to obtain target functions
for these Monte Carlo moves �10,12�. We therefore refer to
the DBH-prepared states as “well equilibrated.”

If a glassy state is desired, we increase rc to 1.5a and
perform a rapid temperature quench at a cooling rate of

Ṫ=−2�10−3�� /kB� /�LJ. The systems are cooled to T
=0.55� /kB at constant density, and then to T=0.1� /kB at zero
pressure using a Nose-Hoover barostat �18�. The resulting
glasses have density ��1.02a−3. Other temperature and
pressure protocols give similar results for Ne.

Once preparation of the system is complete, we perform
primitive path analyses as in Refs. �3,4�. Except as noted in
Sec. III, the procedure is nearly identical to that of Ref. �4�,
and we refer to it as the “standard” PPA procedure. All chain
ends are fixed in space and several changes are made to the
interaction potential. Intrachain excluded-volume interac-
tions are deactivated, while interchain excluded-volume in-
teractions are retained. The covalent bonds are strengthened
by setting k=100�, and the bond lengths are capped at 1.2a
to prevent chains from crossing one another �4�. Note that we
do not attempt to preserve self-entanglements, since their
number is negligibly small for the systems considered here
�4�. For semiflexible chains, the bond-bending potential is
deactivated by setting kbend=0. The system is then coupled to
a heat bath at T=0.001� /kB so that thermal fluctuations are
negligible, and the equations of motion are integrated until
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the chains minimize their length. This typically requires from
500 to 2000 �LJ. Other variants of the PPA procedure are
discussed in Sec. III A.

Once the chain contour lengths have been minimized, we
use the formula given in Ref. �3� to calculate the entangle-
ment length:

Ne =

Ree

2 �
�N − 1�
bpp�2 , �7�

where 
Ree
2 � is the average squared end-end distance, and


bpp� is the mean bond length at the end of the PPA run �3�.
We also calculate the rms variation of bpp for each chain, and
report the mean of this quantity as �bpp. An alternative
method for calculating Ne is to fit the primitive path chain
statistics to Eq. �4�, with l0 and 
cos�	�� as fitting parameters
�4�. The fit value of 
cos�	�� is then inserted into Eq. �5�, and
Ne is identified with C� �4�. In every case this gave values of
Ne consistent with the values from Eq. �7�, confirming that
the primitive paths have Gaussian random walk statistics,
with Ne monomers per Kuhn segment �3�.

III. RESULTS

A. Dependence of Ne on preparation method

Table I shows results from PPA runs for flexible
�kbend=0� and semiflexible �kbend=0.75� or 1.5�� melt states
prepared with the PMD and DBH methods. These results are
for Nch=500 chains of length N=500, so finite-size effects
are small �4�. The measured entanglement lengths depend
dramatically on equilibration procedure. For states prepared
using the DBH method, our results for Ne agree with values
from Ref. �3�. Ne is smaller by a factor of 2–3 for the poorly
equilibrated, PMD-prepared states.

Another difference we find is that �bpp is larger for
poorly equilibrated initial states. Fluctuations in bpp indicate
that friction between chains has prevented stress equilibra-
tion along the chains. This alone would not change the value
of Ne from Eq. �7�. However, Ne would be decreased if fric-
tion prevented the chains from minimizing the total contour
length, for example by trapping free loops along chains.

To test the potential magnitude of such effects we ex-
plored different algorithms for obtaining the primitive paths.

These included beginning the PPA procedure at T=1.0 and
cooling slowly, reducing the excluded volume interaction be-
tween adjacent monomers gradually, and increasing the value
of a in the LJ potential to reduce friction between chains.
Reference �4� specifies �bpp�0.006a as a criterion for con-
vergence of PPA runs to a state with uniform bond tension in
the individual chains. For the standard PPA procedure, this
convergence failed to occur for four of the six systems in
Table I. Table II shows results for these states with our al-
tered PPA procedure. While improved stress equilibration re-
duces �bpp by a factor of 2, the values of Ne increase by at
most 5%. Thus it seems interchain friction is not responsible
for the large differences in Ne.

The entanglement length of a bulk polymeric system is
often related to large-scale measures of chain structure such
as the packing length p �5�,

p =
N

�
Ree
2 �

, �8�

which is the volume occupied by a chain divided by its
mean-square end-end distance. Extensive experiments on lin-
ear, Gaussian-chain homopolymers have shown that
Ne��p3 �5–7�. The packing lengths are 0.68a and 0.65a for
the DBH-prepared and PMD-prepared kbend=0 states, re-
spectively. Based on the experimentally observed power-law
dependence, one might expect that the Ne for the two sys-
tems should differ by only about 10–15%. The actual differ-
ence in the Ne measured by PPA analyses is a factor of 3, as
noted above. Similarly, the differences in Ne between
well and poorly equilibrated states for kbend=0.75� and
kbend=1.5� are far too large to be explained by any difference
in their large-scale structure.

The differences in Ne may, however, be partially under-
stood in terms of differences in short-scale structure. Figure
1 contrasts the chain statistics for the PMD and DBH flexible
melt states, prior to primitive path analysis. To characterize
chain configurations, we find it useful to define the Kuhn-
length-like quantity

lk�n� �

R2�n��

nl0
. �9�

This quantity was found to be more sensitive to equilibration
than the other quantities considered in Ref. �10�. In Fig. 1,
lk�n� for the DBH-prepared state increases nearly monotoni-
cally with n, displaying a Gaussian limit lk�n�� lK=1.84a for
chemical distances n�100. The PMD states show pro-

TABLE I. Primitive path analysis results for flexible and semi-
flexible melts—standard procedure. All of the PMD states listed
were equilibrated for 480�LJ following the fast pushoff. The quoted
uncertainties in Ne are the errors on the means of the distributions
of Ree

2 / ��N−1�bpp
2 � for the Nch chains, with each chain considered

an independent measurement.

Method kbend /� Ne 
bpp� /a �bpp /a

DBH 0 73.2±2.4 0.1543 0.0037

PMD 0 24.9±0.9 0.2695 0.0144

DBH 0.75 45.1±1.5 0.2135 0.0042

PMD 0.75 18.3±0.6 0.3397 0.0304

DBH 1.5 28.1±1.0 0.3078 0.0119

PMD 1.5 13.1±0.5 0.4510 0.0612

TABLE II. Primitive path analysis results for flexible and semi-
flexible melts with procedure modified to reduce friction. Initial
states and uncertainties are as in Table I.

Method kbend /� Ne 
bpp� /a �bpp /a

PMD 0 26.1±0.9 0.2638 0.0072

PMD 0.75 18.9±0.6 0.3346 0.0143

DBH 1.5 28.8±1.0 0.3040 0.0067

PMD 1.5 13.3±0.5 0.4478 0.0286
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nounced non-Gaussian behavior. Results for lk�n� rise too
steeply at small n, reach a peak at n=nmax, then drop to
essentially the same large scale value as the DBH state as
n→N �10�. The differences in the short-scale chain configu-
rations are qualitatively consistent with the difference in Ne;
the straightening of chains at small scales in the PMD state is
similar to that produced by increasing kbend, which also low-
ers Ne �5,13,20�.

Figure 2 contrasts the chain statistics of the primitive
paths for the PMD and DBH flexible melt states. The peak in
the PMD statistics at intermediate range is suppressed and
the final curve is consistent with Gaussian statistics. This is
why we get the same Ne from Eq. �7� or a fit to the full curve.
The change in the PMD statistics during implementation of
the PPA appears to be more dramatic than that for the DBH
state. However, the relative displacement of monomers at
n�Ne is only of order a, i.e., small compared to the tube
diameter, in both cases.

B. Evolution of Ne with PMD equilibration time

The effect of short-scale structure on Ne can be further
examined by following both during sample equilibration.
Figure 3 shows how the melt chain statistics evolve with
increasing PMD equilibration time for a semiflexible
�kbend=0.75�� Nch=200, N=350 system. After equilibration
runs of order 103�LJ following the fast pushoff, the chain
statistics show the short scale stretching typical of poorly
equilibrated states �10�. After an equilibration run of one
Rouse time, �R�2�105�LJ �12�, the chain statistics are well
equilibrated at chemical distances up to about ten monomers,
but still out of equilibrium at chemical distances approaching

the chain length. Table III shows additional information
on the pre-PPA melt chain statistics, as well as PPA
results for this system for PMD equilibration times up
to 4.5�105�LJ�2�R. Results for well-equilibrated
DBH-prepared states from Ref. �3� are shown for compari-
son. The value of Ne rises rapidly, doubling by �R /4 and
tripling by ��R. Note that the values of �bpp drop with in-
creasing teq over roughly the same time scale, indicating that
friction effects diminish.

The changes in Ne and lk described above are much faster
than the disentanglement time; �R is only about �d /5 for this
system �12�. Thus the loss of entanglements must occur
through a mechanism which is faster than reptation. Chain
retraction is a mechanism studied in nonlinear-response tube
theories �2� wherein the unentangled ends of a stretched
chain contract rapidly inwards along its tube, thereby short-
ening the tube and releasing entanglement constraints. This
process is much faster than reptation for N /Ne�1 because
motion of the chain ends arises from entropic tension rather
than stochastic diffusion, and because the chain center of
mass need not move �2�. Since the fast pushoff stretches
chains, chain retraction begins as soon as the Lennard-Jones
interactions are activated. As shown in Fig. 3 and Table III,
the chains rapidly contract at scales comparable to the end-
end distance. 
Ree

2 � drops as much as four standard deviations
below its equilibrium value at teq��R, showing that this con-
traction is not an equilibrium fluctuation.

As most of the chains are contracting in this way simul-
taneously, many topological constraints are also released far
from chain ends. The combination of chain retraction and
constraint release �2� accounts for the observed evolution of
the chain statistics at small chemical distances. Another in-
dication of the presence of constraint release is that the re-
laxation of the primitive path length Lpp= �N−1�
bpp�, which
is well fit by the tube-theory prediction for chain retraction
�1�

Lpp�teq� = L0 +
L1

�teq

+ L2 �
odd p

exp�− p2teq/�pp�
p2 , �10�

has a decay time which is clearly below �R;
�pp�8�104�LJ�0.4�R. Studies with different initial states

FIG. 1. Chain statistics lk�n� for PMD �dashed curve� and DBH
�solid curve� melt states of 500 flexible chains of length N=500.
The horizontal line, lk�n�=1.84a, illustrates the large-n Gaussian
limit of the well-equilibrated state.

FIG. 2. Chain statistics lk�n� for PMD �dashed curve� and DBH
�solid curve� melt states of 500 flexible chains of length N=500,
after implementation of the PPA.

FIG. 3. �Color online� Evolution of melt chain statistics lk�n�
with PMD equilibration time for a 200-chain N=350 system with
kbend=0.75� at T=1.0� /kB. The dashed and dotted curves are after
500�LJ and 2�105�LJ �about one Rouse time�, respectively. The
solid curve shows chain statistics of a well-equilibrated DBH state,
and the horizontal dash-dotted line corresponds to the equilibrium
Kuhn length, lK=2.16a.
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and kbend=0 also show that entanglement loss is more rapid
than reptation, with �pp about half of �R.

As noted in Sec. II, full equilibration of Ne should occur
only after the disentanglement time �d, when the chains have
vacated their original tubes. It is interesting that the Ne=43
value obtained for the longest-equilibrated PMD state is con-
sistent with values obtained for well-equilibrated states �3�,
when clearly the chain configurations remain far from equi-
librium at large chemical distances. This suggests that short-
range order plays the most important role in determining
entanglements. Confirming this would require following the
evolution of Ne to t��d, which is beyond the scope of this
study.

C. Primitive path analyses of glasses

The six melt states from Table I were rapidly quenched,
and standard primitive path analyses were applied to the re-
sulting glassy states. In every case, the value of Ne in the
glass was close to that in the corresponding melt, even
though melt values depended strongly on kbend and equilibra-
tion. It is often assumed �13,14� that glasses inherit the melt
value for Ne, and our results are consistent with this assump-
tion to within statistical and systematic errors ��5% �.

Nevertheless, it is interesting that the values of Ne were
lower in the glass than in the melt in all six cases. This
reduction could in principle arise from an increase in inter-
chain friction associated with the higher density of the glassy
states, but the values of �bpp in Table IV rule this out. All
were remarkably close to the values for the corresponding
melt states in Table I, indicating that friction is not respon-
sible for the changes in Ne.

The small drop in Ne from melt to glass might be associ-
ated with changes in chain statistics. An affine contraction of
chains would not change Ne. However, while the density
increases by 15% during the quench, the backbone bond
length l0 decreases by only 0.5%. Chains in the glass are
therefore stretched at short scales �n�10� relative to an af-
fine contraction from the melt. Reduction of Ne due to this
short-scale stretching would be consistent with our results
for poorly equilibrated melts. Additional entanglements may
be created as chain ends push outward during the quench.

Another possible explanation could be that the change in
density couples to chain-thickness effects associated with the
PPA. For states of constant density, increasing the bead di-
ameter during implementation of the PPA decreases the cal-
culated value of Ne. The values of Ne in the glassy states
average 94% of those in the corresponding melts, and
��glass /�melt�−1/3 is also 0.94. The increase in density from
melt to glass could correspond to an increase in the effective
chain thickness, which would be consistent with the ob-
served reduction in Ne. We leave further discussion of this
issue to a forthcoming paper.

Values of Ne in polymer glasses are often inferred
from measurements of the plateau shear modulus
�GN

0 =4�kBT /5Ne� in the rubbery regime just above Tg �13�.
Below the glass transition, rheological measurements be-
come impossible, but Ne can be measured via the craze ex-
tension ratio �=�0 /�craze �14�, where �0 is the density of the
undeformed glass and �craze is the density of a stable craze.
The assumption that entanglements act like chemical
crosslinks leads to the prediction �=�th��Nel0 / lK, where lK
is the Kuhn length in the glass �14�. Experimental and simu-
lation values for � at T�Tg are consistent with this predic-
tion for values of Ne obtained from the plateau modulus
�13,15�. However, the prediction has not been tested for di-
rect measurements of Ne in the glassy state.

Table IV compares values of �th predicted by values of Ne
from PPA analysis of the undeformed glassy states to directly

TABLE III. Evolution of PPA results for a Nch=200, N=350 semiflexible �kbend=0.75�� system with
PMD melt equilibration time teq, following a fast pushoff. The Rouse time of these chains is
�R�2�105�LJ �12�. Error bars are as defined in Table I. In the bottom row, nmax, lk, and 
Ree

2 � are limiting
values for Nch→�, while Ne, bpp, and �bpp are from Ref. �3�.

teq /�LJ nmax lk�nmax� /a 10−2
Ree
2 � /a2 Ne 
bpp� /a �bpp /a

5�102 13 2.51 7.20 11±1 0.434 0.058

3�103 18 2.39 6.89 12±2 0.405 0.048

5�104 19 2.24 6.79 22±2 0.300 0.016

1.0�105 21 2.16 6.22 25±2 0.265 0.010

2.0�105 21 1.99 5.55 31±2 0.228 0.005

3.0�105 26 2.04 5.82 34±3 0.220 0.004

4.5�105 29 2.00 6.48 43±3 0.207 0.003

Equilibrated 350 2.16 7.24 45±3 0.21 �0.006

TABLE IV. Primitive path analysis results for glasses. The
quoted uncertainties in Ne �PPA� are as in Table I. Values of �th use
the PPA values of Ne, with �th=�Nel0 / lK. Values of � are measured
using the same procedure as Ref. �15�, and Ne

th=�2lK / l0.

Method kbend /� Ne �PPA� �bpp /a �th � Ne
th

DBH 0 71.2±2.3 0.0038 6.5±0.2 5.9±0.4 59±8

PMD 0 23.3±0.9 0.0126 3.6±0.2 5.9±0.2 62±8

DBH 0.75 42.9±1.5 0.0042 4.8±0.2 5.4±0.8 58±17

PMD 0.75 16.9±0.6 0.0308 2.8±0.2 5.2±0.4 58±13

DBH 1.5 26.5±1.5 0.0121 3.2±0.1 3.7±0.4 36±8

PMD 1.5 12.2±1.0 0.0619 2.1±0.2 4.1±0.3 45±7
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measured values of �. The latter were obtained by straining
uniaxially at constant velocity and measuring the ratio of the
densities of coexisting uncrazed and crazed regions as in Ref.
�15�. The values of �th and � are consistent for the DBH
states, but not for PMD states. Indeed, values of � are rela-
tively insensitive to equilibration, which suggests that the
craze extension ratio is controlled mainly by large-scale
chain structure. Chains are greatly stretched as they pass
from undeformed regions into the craze, and this may re-
move the memory of short-scale stretching from the fast
pushoff.

IV. DISCUSSION AND CONCLUSIONS

We have shown that the density of entanglements in a
model polymeric melt can depend very strongly on equilibra-
tion of chain structure at short length scales. Values of the
entanglement length for poorly equilibrated states prepared
using noncrossing chain dynamics �PMD� were found to be
as much as four times lower than values for well-equilibrated
states prepared using an algorithm which changes chain con-
nectivity �DBH�. Coil-packing models, which focus on large-
scale chain structure, fail to predict the magnitude of the
differences in Ne. Instead, the low values of Ne for poorly
equilibrated states �Table I� can be attributed to local chain
stretching caused by the fast pushoff procedure used to in-
troduce excluded volume interactions.

At the conclusion of the fast pushoff, chain retraction en-
sues. Values of Ne can increase rapidly towards apparent
equilibrium over time scales comparable to the Rouse time
as short-scale chain structure equilibrates �Table III, Fig. 3�.
However, large-scale chain structure remains far from equi-
librium at �R, and Ne may continue to evolve until the chains

have vacated their original tubes after a time �d. Since this
time scales as �N /Ne�3 for noncrossing chains, preparation
methods which either entirely avoid producing the local
chain stretching �e.g., through use of chain prepacking fol-
lowed by a “slow” pushoff �10��, or accelerate equilibration
by altering chain connectivity �10,24–26�, are far more suit-
able for the preparation of equilibrated states for primitive
path analysis.

Changes in Ne upon cooling from melts well above Tg to
glassy states well below Tg were small for all equilibration
protocols and chain stiffnesses examined. We did find that
values of Ne were uniformly lower in the glasses than in the
melts; this could be attributed either to chain-thickness ef-
fects in the implementation of the PPA or to the stiffness of
backbone bonds relative to intermolecular bonds. However,
the differences were comparable to the uncertainties in our
measurements, and our results are consistent with the com-
mon assumption that the value of Ne in glassy states is in-
herited from the melt. Finally, we found that values of Ne
inferred from measurements of the craze extension ratio were
much less sensitive to equilibration than the values of Ne
obtained from PPA analyses of undeformed glassy states.
This may indicate that deformation into the craze removes
any memory of the short-scale chain stretching.
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